Uniqueness and non–uniqueness of prescribed mass NLS ground states on metric graphs
نویسندگان
چکیده
منابع مشابه
Ground State Mass Concentration for Nls
We consider finite time blowup solutions of the L 2-critical cubic focusing nonlinear Schrödinger equation on R 2. Such functions, when in H 1 , are known to concentrate a fixed L 2-mass (the mass of the ground state) at the point of blowup. Blowup solutions from initial data that is only in L 2 are known to concentrate at least a small amount of mass. In this paper we consider the intermediate...
متن کاملOn the uniqueness of ground states of non-local equations
We review our joint result with E. Lenzmann about the uniqueness of ground state solutions of non-linear equations involving the fractional Laplacian and provide an alternate uniqueness proof for an equation related to the intermediate long-wave equation.
متن کاملUniqueness and nonuniqueness in the Einstein constraints.
The conformal thin-sandwich (CTS) equations are a set of four of the Einstein equations, which generalize the Laplace-Poisson equation of Newton's theory. We examine numerically solutions of the CTS equations describing perturbed Minkowski space, and find only one solution. However, we find two distinct solutions, one even containing a black hole, when the lapse is determined by a fifth ellipti...
متن کاملOptimal Mass Transport on Metric Graphs
We study an optimal mass transport problem between two equal masses on a metric graph where the cost is given by the distance in the graph. To solve this problem we find a Kantorovich potential as the limit of p−Laplacian type problems in the graph where at the vertices we impose zero total flux boundary conditions. In addition, the approximation procedure allows us to find a transport density ...
متن کاملSolis Graphs and Uniquely Metric Basis Graphs
A set $Wsubset V (G)$ is called a resolving set, if for every two distinct vertices $u, v in V (G)$ there exists $win W$ such that $d(u,w) not = d(v,w)$, where $d(x, y)$ is the distance between the vertices $x$ and $y$. A resolving set for $G$ with minimum cardinality is called a metric basis. A graph with a unique metric basis is called a uniquely dimensional graph. In this paper, we establish...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2020
ISSN: 0001-8708
DOI: 10.1016/j.aim.2020.107352